High order optimal feedback control of space trajectories with bounded control
نویسندگان
چکیده
Optimal feedback control is classically based on linear approximations, whose accuracy drops off rapidly in highly nonlinear dynamics. Several nonlinear optimal feedback control strategies have appeared in recent years. Among them, differential algebraic techniques have been used to tackle nonlinearities by expanding the solution of the optimal control problem about a reference trajectory and reducing the computation of optimal feedback control laws to the evaluation of high order polynomials. However, the resulting high order method could not handle control saturation constraints, which remain a critical facet of nonlinear optimal feedback control. This work introduces the management of saturating actuators in the differential algebraic method. More specifically, the constraints are included in the optimal control problem formulation and differential algebra is used to expand the associated optimal bang-bang solution with respect to initial and terminal conditions. Optimal feedback control laws for thrust direction and switching times are again computed by evaluating the resulting polynomials. Illustrative applications are ∗Corresponding author. E-mail: [email protected] Preprint submitted to Acta Astronautica January 2, 2013 presented in the frame of the optimal low-thrust transfer to asteroid 1996 FG3.
منابع مشابه
Control Theory and Economic Policy Optimization: The Origin, Achievements and the Fading Optimism from a Historical Standpoint
Economists were interested in economic stabilization policies as early as the 1930’s but the formal applications of stability theory from the classical control theory to economic analysis appeared in the early 1950’s when a number of control engineers actively collaborated with economists on economic stability and feedback mechanisms. The theory of optimal control resulting from the contributio...
متن کاملA Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales Based Flatness
This paper works on the concept of flatness and its practical application for the design of an optimal transient controller in a synchronous machine. The feedback linearization scheme of interest requires the generation of a flat output from which the feedback control law can easily be designed. Thus the computation of the flat output for reduced order model of the synchronous machine with simp...
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کاملDifferential Flatness Method Based on Pre-set Guidance and Control Subsystem Design for a Surface to Surface Flying Vehicle (TECHNICAL NOTE)
The purpose of this paper is to design a guidance and control system and evaluate the performance of a sample surface‑to‑surface flying object based on preset guidance with a new prospective. In this study, the main presented idea is usage of unique property of governor differential equations in order to design and develop a controlled system. Thereupon a set of system output variables have bee...
متن کاملA Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer
This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013